Scale Invariance and Hierarchy in National Road Networks

Aaron Clauset
U. New Mexico, Computer Science
22 May 2006
Network Science Conference

with Vamsi Kalapala
Vishal Sanwalani, and
Cristopher Moore
Abstract Networks

Edge cost not a function of spatial dimensions, e.g.,

- World Wide Web
- Email
- Interaction networks
 - proteins, genes, cell-signals, etc.
 - species (predator-prey, host-parasite)
- Social networks (sort of)
Spatial Networks

Edge cost is function of spatial separation, e.g.,

- Communication
 - wired and wireless transmission
- Transportation
 - distributing resources or goods (pipes)
 - travel (roads)
Road Networks

- We study national road networks of the USA, England and Denmark
- Via their dual representation, we show that
 - they (intuitively) have hierarchical organization
 - dual degree distribution is a power law
 - journeys exhibit scale invariant structure
 - these patterns agree with a fractal placement of roads and intersections
The Dual network

- Each “named” road is a vertex
- Two vertices linked if their roads ever intersect
Dual Road network

Path on dual graph corresponds to driving directions:

- Start on 15th St.
- Turn right onto Indiana Ave.
- Left on 7th St.
- Stop at Union Building
Network Sampling

• We sample the dual graph by querying a commercial service (e.g., Google Maps) for driving directions
• Source and destinations: uniformly random postal-code pairs
• Note: this under samples roads within postal codes, but, local roads already well-studied
Dual Degree Distributions

- Power-law degree distribution for all three nations
- largest degree roads are national highways (many interchanges)
- no universal scaling exponent; value depends on fractal distributions (more later)

<table>
<thead>
<tr>
<th>Network</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>2.4</td>
</tr>
<tr>
<td>England</td>
<td>2.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Dual Degree Distributions

- United States: $\alpha = 2.4$
- England: $\alpha = 2.2$
- Denmark: $\alpha = 2.4$
Journey Structure (1)

- Define **profile**: largest step (centered), flanked by three largest preceding and subsequent steps (in order).

- Journey profile is scale invariant over short, medium and long journeys, for all three nations.

- Conjecture: This is true for all sufficiently large national road networks.
Journey Structure (1)
Journey Structure (2)

- Journey structure itself is scale invariant: the fraction of total distance covered by k^{th} step is constant and independent.

<table>
<thead>
<tr>
<th>Network</th>
<th>Distance</th>
<th>1st largest</th>
<th>2nd largest</th>
<th>3rd largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>0-750</td>
<td>0.460±</td>
<td>0.212±</td>
<td>0.118±</td>
</tr>
<tr>
<td></td>
<td>751-1250</td>
<td>0.397±</td>
<td>0.208±</td>
<td>0.129±</td>
</tr>
<tr>
<td></td>
<td>1251+</td>
<td>0.382±</td>
<td>0.201±</td>
<td>0.132±</td>
</tr>
</tbody>
</table>

- Suggests scaling relationship $s_j = A_j \ell$
fit data with
\[s_j = A_j \ell^{\alpha_j} \]
and find that
\[\alpha_j = 1.0 \pm 0.1 \]
Fractal Structure

• Define: d_p, the fractal dimension for distribution of intersections in plane

• Define: d_i, the fractal dimension for distribution of intersections on a single road

• If road placement follows this fractal structure, the dual degree distribution scales like

$$\alpha = 1 + \frac{d_p}{d_i} \quad \text{(see paper)}$$
Fractal Structure

<table>
<thead>
<tr>
<th>Schema</th>
<th>d_p</th>
<th>d_i</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>$\log_3 9$</td>
<td>$\log_3 3$</td>
<td>3.00</td>
</tr>
<tr>
<td>all but center</td>
<td>$\log_3 8$</td>
<td>$\log_3 3$</td>
<td>2.89 (Sierpinski)</td>
</tr>
<tr>
<td>odd numers</td>
<td>$\log_3 5$</td>
<td>$\log_3 2$</td>
<td>3.32</td>
</tr>
<tr>
<td>corners</td>
<td>$\log_3 4$</td>
<td>$\log_3 2$</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Challenges

- Adapt fractal model to generate more statistically realistic road network
 - e.g., incorporate traffic densities, population densities, etc.
- Validate connection between α and d_p, d_i; measure real fractal dimensions
- Comparison with other transportation networks, e.g., natural gas distribution pipelines, circulatory system

Fin