Spreading dynamics on small-world networks with wide connectivity fluctuations

Alexei Vazquez

Center for Cancer Systems Biology, Dana Farber Cancer Institute
Department of Physics and Center for Complex Networks Research
University of Notre Dame
Epidemic outbreak

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Population structure

Contact graph

N agents

p_k connectivity distribution

D average distance
Spanning tree

- Generation
 - 0: root
 - 1
 - 2
 - 3
 - 4

- $kp_k/\langle k \rangle$
- $k-1$
- k
- p_k
Timming

Generation time T

Distribution $G(\tau) = \Pr(T \leq \tau)$
1. The process start with a node \((d=0)\) that generates \(k\) sons with probability distribution \(p_k\).

2. Each son at generation \(1<d<D\) generates \(k-1\) new sons with probability \(kp_k/\langle k \rangle\).

3. Nodes at generation \(D\) does not generate any son.

4. The generation times are independent random variables with distribution function \(G(\tau)\).

Note: Galton-Watson, Newman, Bellman-Harris, Crum-Mode-Jagers
Iterative approach

\[N_d(t) = 1 + \tilde{R} \int_{0}^{t} dG(\tau)N_{d+1}(t - \tau) \]
Constants transmission rate λ, $G(\tau)=1-e^{-\lambda \tau}$

$I(t) = \frac{dN_0(t)}{dt} = \lambda \tilde{R} e^{-\lambda t} \sum_{d=1}^{D} \frac{(\lambda \tilde{R} t)^{d-1}}{(d-1)!} \approx \begin{cases} e^{(\tilde{R}-1)\lambda t} & t << t_0 \\ t^{D-1} e^{-\lambda t} & t >> t_0 \end{cases}$

$\tilde{R} = \frac{\langle k(k-1) \rangle}{\langle k \rangle}$ Excess degree/reproductive number

$t_0 = \frac{D-1}{\tilde{R}} \frac{1}{\lambda}$ Characteristic time scale

Numerical simulations

• Random graphs with a power law degree distribution: $p_k \sim k^{-\gamma}$

\[
\tilde{R} = \frac{\langle k(k-1) \rangle}{\langle k \rangle} \sim \begin{cases}
N^0 & \gamma > 3 \\
N^{(3-\gamma)/(\gamma-1)} & \gamma < 3
\end{cases}
\]

\[
\lambda t_0 \sim \begin{cases}
\ln N & \gamma > 3 \\
\frac{\ln N}{N^{(3-\gamma)/(\gamma-1)}} & \gamma < 3
\end{cases}
\]
Numerical simulations

\[\frac{I(t)}{N} = \begin{cases} \lambda t, & \gamma = 3.5 \\ t^{D-1} e^{-\lambda t}, & \gamma = 2.5 \end{cases} \]

\[e^{(R-1)\lambda t} \quad \text{for all } \gamma \]

\[N = 1,000, \quad N = 10,000, \quad N = 100,000 \]
AIDS epidemics

![Graph showing cumulative number of cases over time for different locations with different growth models: exponential, linear, quadratic, and cubic. The graph includes data points for New York - HOM, New York - HET, San Francisco - HOM, South Africa, Georgia, Latvia, Lithuania, and Kenya. The reference is Szendroi & Czanyi, Proc. R Soc. Lond. B 2004.](image)
Generalizations

Connectivity correlations

\[\tilde{R}_k = \sum_{k'} q(k' \mid k) k' \sim k^{\nu} \rightarrow \begin{cases} \nu < 0 & \text{disassortative} \\ \nu = 0 & \text{uncorrelated} \\ \nu > 0 & \text{assortative} \end{cases} \]

\[q(k' \mid k) = \begin{cases} \frac{k' p_{k'}}{\langle k \rangle} & \text{uncorrelated} \\ \neq \frac{k' p_{k'}}{\langle k \rangle} & \text{correlated} \end{cases} \]

Vazquez, q-bio.PE/0603010
Generalizations

Intermediate states

\[g(\tau) = \frac{\lambda (\lambda \tau)^{\beta-1} e^{-\lambda \tau}}{\Gamma(\beta)} \]

\[I(t) \sim \begin{cases}
 e^{(\tilde{R}-1)\lambda t} & t << t_0 \\
 t^{\beta D-1} e^{-\lambda t} & t >> t_0
\end{cases} \]

\[\tilde{R} = \beta \left(\frac{\langle k(k-1) \rangle}{\langle k \rangle} \right)^{1/\beta} \]

\[t_0(\beta) \approx \left[\frac{\beta (\beta D - 1) \cdots (\beta D - \beta)}{\tilde{R}} \right]^{1/\beta} \frac{1}{\lambda} \]

Vazquez, AMS-DIMACS 2006
Generalizations

Multi-type

\(i = 1, \ldots, M\) types

\(N_i\) number of type \(i\) agents

\(p^{(i)}_k\) type \(i\) degree distribution

\(e_{ij}\) mixing matrix

\(D\) average distance

Reproductive number matrix

\[
\tilde{R}_{ij} = \frac{\langle k_i (k_i - 1) \rangle}{\langle k_i \rangle} e_{ij}
\]

Vazquez, q-bio.PE/0605001
Patient isolation (at rate μ)

$$I(t) \approx \begin{cases} e^{(\tilde{R} - 1)(\lambda + \mu)t} & t << t_0 \\ t^{D-1} e^{-(\lambda + \mu)t} & t >> t_0 \end{cases}$$

$$t_0 = \frac{D - 1}{\tilde{R}} \frac{1}{\lambda + \mu}, \quad \tilde{R} = \frac{\lambda}{\lambda + \mu} \frac{\langle k(k-1) \rangle}{\langle k \rangle}$$

Final outbreak size

$$N_1 = R \frac{\tilde{R}^D - 1}{\tilde{R} - 1}$$
Conclusions

- Truncated branching processes are a suitable framework to model spreading processes on real networks.
- There are two spreading regimes.
 - Exponential growth.
 - Polynomial growth followed by an exponential decay.
- The time scale separating them is determined by D/R.
- The small-world property and the connectivity fluctuations favor the polynomial regime.
- Intermediate states favor the exponential regime.
- The final outbreak size is determined by R and D.
Outbreak size dynamics

\[N_1(t) = 1 + \sum_{d=1}^{D} z_d \Pr(\sum_{l=1}^{d} \tau_l \leq t) \]

mean number of nodes at generation \(d \)

prob. of reaching a node at generation \(d \) before time \(t \)

Incidence

\[I(t) = \frac{dN_1(t)}{dt} \]

Example: constant transmission rate \(\lambda \), \(G(\tau) = 1 - e^{-\lambda \tau} \)

\[I(t) = \lambda \langle k \rangle e^{-\lambda t} \sum_{d=1}^{D} \frac{(\lambda K t)^{d-1}}{(d-1)!} \]

Current models vs reality

Current models

- few secondary cases
- several generations

Reality

- Super-spreading
- few generations

- Infected
- Infected/super-spreader
- Infected/recovered
Epidemic outbreak
Annealed spanning tree (AST)

1. The process starts with a node \((d=0)\) that generates \(k\) descendants with probability distribution \(p_k\).
2. Each descendant at generation \(1<d<D\) generates \(k-1\) new descendants with probability \(kp_k/k\).
3. Nodes at generation \(D\) do not generate any descendant.

Approximations

1. Tree structure
2. Annealed average
3. Sharp truncation

Note: Galton-Watson, Newman